[livres divers classés par sujet] [Informatique] [Algorithmique] [Programmation] [Mathématiques] [Hardware] [Robotique] [Langage] [Intelligence artificielle] [Réseaux]
[Bases de données] [Télécommunications] [Chimie] [Médecine] [Astronomie] [Astrophysique] [Films scientifiques] [Histoire] [Géographie] [Littérature]

Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems

title Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems
creator Bungartz, H.-J.
Griebel, M.
Rüde, U.
date 1994-01
language eng
identifier  http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-1994-01&engl=1
description Several variants of extrapolation can be used for elliptic partial differential equations. They are Richardson extrapolation, truncation error extrapolation and extrapolation of the functional. In multi-dimensional problems, multivariate error expansions can be exploited by multivariate extrapolation, where the asymptotic expansions in different mesh parameters are exploited. Particularly interesting cases are the combination technique that uses all the grids that have constant product of the meshspacings in the different coordinate directions. Another related technique is the sparse grid finite element technique that can be interpreted as a combination extrapolation of the functional.
publisher North Holland: Elsevier
type Text
Article in Journal
source In: Comput. Methods Appl. Mech. Eng.. Vol. 116, pp. 243-252
contributor IPVS, Simulation großer Systeme
Hans-Joachim Bungartz
subject Mathematics of Computing General (CR G.0)